3.960 \(\int (d+e x)^3 (1-\frac {e^2 x^2}{d^2})^p \, dx\)

Optimal. Leaf size=57 \[ -\frac {d^4 2^{p+3} \left (\frac {d-e x}{d}\right )^{p+1} \, _2F_1\left (-p-3,p+1;p+2;\frac {d-e x}{2 d}\right )}{e (p+1)} \]

[Out]

-2^(3+p)*d^4*((-e*x+d)/d)^(1+p)*hypergeom([-3-p, 1+p],[2+p],1/2*(-e*x+d)/d)/e/(1+p)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {676, 69} \[ -\frac {d^4 2^{p+3} \left (\frac {d-e x}{d}\right )^{p+1} \, _2F_1\left (-p-3,p+1;p+2;\frac {d-e x}{2 d}\right )}{e (p+1)} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^3*(1 - (e^2*x^2)/d^2)^p,x]

[Out]

-((2^(3 + p)*d^4*((d - e*x)/d)^(1 + p)*Hypergeometric2F1[-3 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/(e*(1 + p)))

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 676

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a^(p + 1)*d^(m - 1)*((d - e*x)/d)^
(p + 1))/(a/d + (c*x)/e)^(p + 1), Int[(1 + (e*x)/d)^(m + p)*(a/d + (c*x)/e)^p, x], x] /; FreeQ[{a, c, d, e, m}
, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && (IntegerQ[m] || GtQ[d, 0]) && GtQ[a, 0] &&  !(IGtQ[m, 0] &&
(IntegerQ[3*p] || IntegerQ[4*p]))

Rubi steps

\begin {align*} \int (d+e x)^3 \left (1-\frac {e^2 x^2}{d^2}\right )^p \, dx &=\left (d^2 \left (\frac {d-e x}{d}\right )^{1+p} \left (\frac {1}{d}-\frac {e x}{d^2}\right )^{-1-p}\right ) \int \left (\frac {1}{d}-\frac {e x}{d^2}\right )^p \left (1+\frac {e x}{d}\right )^{3+p} \, dx\\ &=-\frac {2^{3+p} d^4 \left (\frac {d-e x}{d}\right )^{1+p} \, _2F_1\left (-3-p,1+p;2+p;\frac {d-e x}{2 d}\right )}{e (1+p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.11, size = 116, normalized size = 2.04 \[ d e^2 x^3 \, _2F_1\left (\frac {3}{2},-p;\frac {5}{2};\frac {e^2 x^2}{d^2}\right )-\frac {2 d^4 \left (1-\frac {e^2 x^2}{d^2}\right )^{p+1}}{e (p+1)}+\frac {d^4 \left (1-\frac {e^2 x^2}{d^2}\right )^{p+2}}{2 e (p+2)}+d^3 x \, _2F_1\left (\frac {1}{2},-p;\frac {3}{2};\frac {e^2 x^2}{d^2}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^3*(1 - (e^2*x^2)/d^2)^p,x]

[Out]

(-2*d^4*(1 - (e^2*x^2)/d^2)^(1 + p))/(e*(1 + p)) + (d^4*(1 - (e^2*x^2)/d^2)^(2 + p))/(2*e*(2 + p)) + d^3*x*Hyp
ergeometric2F1[1/2, -p, 3/2, (e^2*x^2)/d^2] + d*e^2*x^3*Hypergeometric2F1[3/2, -p, 5/2, (e^2*x^2)/d^2]

________________________________________________________________________________________

fricas [F]  time = 1.01, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (e^{3} x^{3} + 3 \, d e^{2} x^{2} + 3 \, d^{2} e x + d^{3}\right )} \left (-\frac {e^{2} x^{2} - d^{2}}{d^{2}}\right )^{p}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(1-e^2*x^2/d^2)^p,x, algorithm="fricas")

[Out]

integral((e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3)*(-(e^2*x^2 - d^2)/d^2)^p, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (e x + d\right )}^{3} {\left (-\frac {e^{2} x^{2}}{d^{2}} + 1\right )}^{p}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(1-e^2*x^2/d^2)^p,x, algorithm="giac")

[Out]

integrate((e*x + d)^3*(-e^2*x^2/d^2 + 1)^p, x)

________________________________________________________________________________________

maple [A]  time = 0.82, size = 104, normalized size = 1.82 \[ \frac {e^{3} x^{4} \hypergeom \left (\left [2, -p \right ], \relax [3], \frac {e^{2} x^{2}}{d^{2}}\right )}{4}+d \,e^{2} x^{3} \hypergeom \left (\left [\frac {3}{2}, -p \right ], \left [\frac {5}{2}\right ], \frac {e^{2} x^{2}}{d^{2}}\right )+\frac {3 d^{2} e \,x^{2} \hypergeom \left (\left [1, -p \right ], \relax [2], \frac {e^{2} x^{2}}{d^{2}}\right )}{2}+d^{3} x \hypergeom \left (\left [\frac {1}{2}, -p \right ], \left [\frac {3}{2}\right ], \frac {e^{2} x^{2}}{d^{2}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3*(1-e^2*x^2/d^2)^p,x)

[Out]

1/4*e^3*x^4*hypergeom([2,-p],[3],e^2*x^2/d^2)+d*e^2*x^3*hypergeom([3/2,-p],[5/2],e^2*x^2/d^2)+3/2*e*d^2*x^2*hy
pergeom([1,-p],[2],e^2*x^2/d^2)+d^3*x*hypergeom([1/2,-p],[3/2],e^2*x^2/d^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (e x + d\right )}^{3} {\left (-\frac {e^{2} x^{2}}{d^{2}} + 1\right )}^{p}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(1-e^2*x^2/d^2)^p,x, algorithm="maxima")

[Out]

integrate((e*x + d)^3*(-e^2*x^2/d^2 + 1)^p, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int {\left (1-\frac {e^2\,x^2}{d^2}\right )}^p\,{\left (d+e\,x\right )}^3 \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - (e^2*x^2)/d^2)^p*(d + e*x)^3,x)

[Out]

int((1 - (e^2*x^2)/d^2)^p*(d + e*x)^3, x)

________________________________________________________________________________________

sympy [B]  time = 6.66, size = 479, normalized size = 8.40 \[ d^{3} x {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, - p \\ \frac {3}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )} + 3 d^{2} e \left (\begin {cases} \frac {x^{2}}{2} & \text {for}\: e^{2} = 0 \\- \frac {d^{2} \left (\begin {cases} \frac {\left (1 - \frac {e^{2} x^{2}}{d^{2}}\right )^{p + 1}}{p + 1} & \text {for}\: p \neq -1 \\\log {\left (1 - \frac {e^{2} x^{2}}{d^{2}} \right )} & \text {otherwise} \end {cases}\right )}{2 e^{2}} & \text {otherwise} \end {cases}\right ) + d e^{2} x^{3} {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, - p \\ \frac {5}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )} + e^{3} \left (\begin {cases} \frac {x^{4}}{4} & \text {for}\: e = 0 \\- \frac {d^{6} \log {\left (- \frac {d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} - \frac {d^{6} \log {\left (\frac {d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} - \frac {d^{6}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} + \frac {d^{4} e^{2} x^{2} \log {\left (- \frac {d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} + \frac {d^{4} e^{2} x^{2} \log {\left (\frac {d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} & \text {for}\: p = -2 \\- \frac {d^{4} \log {\left (- \frac {d}{e} + x \right )}}{2 e^{4}} - \frac {d^{4} \log {\left (\frac {d}{e} + x \right )}}{2 e^{4}} - \frac {d^{2} x^{2}}{2 e^{2}} & \text {for}\: p = -1 \\- \frac {d^{4} \left (1 - \frac {e^{2} x^{2}}{d^{2}}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} - \frac {d^{2} e^{2} p x^{2} \left (1 - \frac {e^{2} x^{2}}{d^{2}}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} + \frac {e^{4} p x^{4} \left (1 - \frac {e^{2} x^{2}}{d^{2}}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} + \frac {e^{4} x^{4} \left (1 - \frac {e^{2} x^{2}}{d^{2}}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} & \text {otherwise} \end {cases}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3*(1-e**2*x**2/d**2)**p,x)

[Out]

d**3*x*hyper((1/2, -p), (3/2,), e**2*x**2*exp_polar(2*I*pi)/d**2) + 3*d**2*e*Piecewise((x**2/2, Eq(e**2, 0)),
(-d**2*Piecewise(((1 - e**2*x**2/d**2)**(p + 1)/(p + 1), Ne(p, -1)), (log(1 - e**2*x**2/d**2), True))/(2*e**2)
, True)) + d*e**2*x**3*hyper((3/2, -p), (5/2,), e**2*x**2*exp_polar(2*I*pi)/d**2) + e**3*Piecewise((x**4/4, Eq
(e, 0)), (-d**6*log(-d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2) - d**6*log(d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2) -
d**6/(-2*d**2*e**4 + 2*e**6*x**2) + d**4*e**2*x**2*log(-d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2) + d**4*e**2*x**2
*log(d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2), Eq(p, -2)), (-d**4*log(-d/e + x)/(2*e**4) - d**4*log(d/e + x)/(2*e
**4) - d**2*x**2/(2*e**2), Eq(p, -1)), (-d**4*(1 - e**2*x**2/d**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4) - d**2
*e**2*p*x**2*(1 - e**2*x**2/d**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4) + e**4*p*x**4*(1 - e**2*x**2/d**2)**p/(
2*e**4*p**2 + 6*e**4*p + 4*e**4) + e**4*x**4*(1 - e**2*x**2/d**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4), True))

________________________________________________________________________________________